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GRAVITY TURBULENCE CONNECTED

WITH INTERFACES

i ;, 2 C. M. Tchen ]
e The City Coliege of '
The City University ot New York, New York

L : ABSTRACT
The spectral distributions of turbulence, as generated by
E 1 the gravity waves on the interface between two fluids, are investi-

gated. Both stabie and unstabie surtfaces are considered. An un-

stable surface reters to the eariy development of turbulence from
the Taylor instability. A stable surtace may refer to the sea
surface. A repeated cascade method 1s used to close the hierarchy
of correlations at their fourth order, and to describe the eddy

transport property as a memory chain ot eddy relaxations. The

production, inertia and dissipation subranges of spectral distribu-

tions on an unstable surface with friction are found to follow the

laws k'z, k'3

k-5

, and K3 for the kinetic energy, and k'3‘5, k"1, and

for the surface elevation. The i1nertia, eddy dissipation by
gravity, and molecular dissipation subranges on a stable surface

3 with friction are found to follow the law k'3 for the kinetic

. energy, and the laws k'], k™> and k™ for the surface elevation,
respectively  The spectra with surtace tension are also investigated.

The physical parameters and the numerical coefficients are

! 3 determined analyticaliy




L. INTRODUCTiON

For neutral fiutds, we <an distinguish hydrodynamic turbulence

and gravity turbuience The latter may occur in a free medium,
e.g. 1n atmospheres and oceans with a mean gradient in density or
temperature. [t can also appear 0n a stable, or an unstable,
surface, of a heavy 1'gu:d bgiow, or above, a light one. For
example, the sea surfoce 15 such a stabie surface. The turbulent
motions in a stadie background may reguire an external source of
energy for the'r mzintenance  On the other hand, an unstable sur-
face may eventually deveiop into s>:ingular fingers, broken bound-
aries and dropiets which cease 1o constitute a continuous surface.
Therefore, the gravity turbulence can oniy reter to the early stage
of the deveopment of @ cont:nuous turbulent surface under an
unstabie condition.

Mathemat:cally speaking, when the pressure is eliminated
between the Navier-Stokes equation and the equation of continuity,
the hydrodynam'c turbulence s des. bed by one single equation of
motion, and the gravity turbulence described by a system of two
equations, governing the velocity and temperature, or density, in a
free medium, or the velucity and the elevation on a moving surface.

In yien of the compiexity of the dynamical equations, the
dimensional method had peen re! ed upon for solutions. It enabled
Kolmogorortl and He aenoerq2 to derive the spectral laws for the
velocity fluctuati ons,

Flb) = cont ¢4 FlA)ment(p




1n the 1nerti'a and dissipation subranges of a hydrodynamic turbu-

D
lence. On the same bas's, Shu " proposed the spectrum

g

R i Va el (2)

for the gravity turbuience ‘n 3 free medium, and Philh‘ps4

obtained an energy spectrum

F st ek iy e (3)

e Hlw)= const j2@—5 (4)
1n gravity turbulence with -urfaces  The spectra may be determined
in the space of wave number k, or or frequency «. The parameters
in the above tormutas are: the raete ot energy dissipation e,
the kinematic viscosity , the acieieration of gravity g, and
the Brunt-Vaisdaid trequency N representative of a mean gradient
n temperature or density

It 15 obvious that the spectra should not be 1dentical
for both stab:.e and unstabie :zurtaces  Since the dimensional
analysis on'y recognizes the pa-ameters, without going into
dynamical mechantsms, it ts not able to determine the conditions,
stable or unstabie, under which the dimensional laws (2), (3) and
{4) shouid appiy, although the authors intended for their use
under a stable condition

In view of the above difticulties, 1t 1s necessary to con-
sider an anal tic treatment  Sin.e most anaiytic theories in

hydrodynam:c turbulence cannot even predict satistactorily a

2o das




Kolmogoroft law (1) which requires only one parameter, we shall resort

to the method of repeated cascade, proposed by Tchens. It enables

closing the h:ierarchy of corre'ations to their fourth order, and
characterizing a turbulent transport property by means of a memory
chain of eddy relaxations. For a hydrodynamic turbulence, it
derived the Kofmogoroff law of turbulence 1n the inertia subrange,
and a k'] law 1ﬁ a gradient flow. In the present paper, we shall
extend the method to the gravity turbulence on stable and unstable

surfaces. The gravity turbulerce tn a free medium will not be

treated here.




[1  DERIVATION OF THE EQUATIONS
rOR THE MOTION Or THE SURFACE

The equat ons of Navier-Stokes and of continuity for the

motion ot a liquid are

\0 W } </ } - .
— gV i D _h‘ 7 g A / (5)
> 4 o S ox g ed 4
/
.B_._‘l./_:_ = O 7 L / /.. ‘Z/ 3 . (6)
e X, ‘7

1 where Vl(t’ X|s X5 x3) is a veloc:ty vector with components

in three dicections x,, Xos X35 P 1S the pressure, p is the density,

v 1s a fractional coefficient, and g 1s the acceleration of
gravity.
We tntroduce a velocity potential o(t, X1s Xos x3) such

that

»
"o

2V

and transtorm Egs. (5) and {6) into a Bernoulli equation and a

: Laplace equation,

T | 3 ﬁ_r; 1JF2,_?_+. l \ 1-2/¢3::/’-(f),

'Dt ) N q (8)
:‘_z¢- = (J L= 7 %3
> %2 sy (9)

respect vely, where f(t) 's a tfunction of time, which may be

determined by a condition at the surface, 1f necessary.

In order to apply Eqs. (8) and (9) to the surrace, we




put x, = -{t, x;, X,) 1n (8), and write the velocity, potential
3 12 e2

and pressure on the surface, as follows:

.
“4 ( x
R E

/ Fa R “
7’-’/,({", xf”(z/‘”lb(l_' X, ) XZ' ,>? = C

transforming {(8) into

/
[,

where T 1s a surface tension.

It can be noted that P and f, which appear in (13),
can be eliminated by taking a gradient, giving

e > i 2 ,£,2 Tt (4 2
S B (i < 4= e V. 7 =
0 \2t Ry P [ AR T EZ)
‘ %=S B 6
T »¢ b R
T Vo /]

T > B
/0 )Z' A XL Lk

I

Equation (14), combined w'th the following kinematic
equation for the surface elevation ¢,
e /%

Pt = (___... L ;l/{' \7 ] :
. 2 /

,XI,’Y(//"_::) /
J

forms two fundamental equations determining the motions of the
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surface. Here

so O
VR ) - // ; 2V, \EVE
3(1‘/”/,*24@/: =& /dx} T‘o_; + DXZ) : (16)
{ -w

The 1imits of integration (.,») refer to an unstable surface, i.e.

W

with ¢ = +1, and the l:mits (-=,z) refer to a stable surface, i.e.

with ¢ = -1. Equation (i5) may be regarded as originated from the

integration of an equation of mass conservation.
Since certain transformations are necessary to simplify

Egs. (14) and (15), we write the potential in Fourier transform

O s / &4 /4 .
PAC *yoxg. % ) = /// a/:‘cl drc_,o/fcj Pl k.t Akj)c/x/J/L,/f(,,xlchx_,_ffg}x_;)](‘]])
j'uo
where the wave number « satisfies the relation
Ko+ e {)" 0, « (]8)

as a consequence of the equation of continuity (9).

As a surtface wave decreases 1ts amplitude vertically like

Q,f//g( - £ él X5 ) 5

we find

X
VR
P

(19)

with o real k as a consequence of the incompressibility of fluid,

as expressed by the relation (18). This permits rewriting (17) in

the form
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and reducing forme:ly (17) to
: ) *«7/;[ ¢ ‘//g, Xrk, /z’)]&x/;_r - g,é Z/
‘A/Jj-_{"a:’ X, + K, »\'z)]u/: (-E’A C/’ =2

ey ) £ il Jub-5£5)

: T "v"",r- $(tw ) b il [
/= -% v ar f/f: Pl{tr mL/j:( wh r, x/+r:2x',3)£4/3(~§£{:‘)
Those rormal rerations provides the possibility of
transtorming atl guantities retated tu velocity and potential

n (14) and (15) 'nto u, as follows:

N T S ity ]
(k) wp ellieho) |4 R,

/

c)- 5[/ 46, ak, 2
/)

-ba

Here and in the foiiowing, the indices refer to 1, § = 1, 2.

Furthermore, the functions R], RZ’ R3 ana R4 dare corrections




'?;, - g AT R

. proportional to - and 1ts derivatives, which 1n turn are proportion- %
al to k-u(k) ;
é We shall now resort to the Boussinesq approximation, well
% ﬁ known in prob'ems of gravity-waves, which neglects such terms as
| 3 proportional to - or to Efff except the term gv; associated with
; ; € the gravity g as a driving rorce in the momentum equation.

That approximat on amounts to neglecting all the above mentioned

correction functions, and thereby reducing (14) to the following

£ simpler form 1n x-space,
= 4= “~

Grese)s e vl g, W

or, 1n Fourier space,

W(U fdé - wlebule) ¢ Vit

s 'Lg*(k)éf'ut(,f/) EL(/;L) , (30)

where

[? (31)

(k) - j( R A (32)

and E 1s a driving force due to the gravitation pull of the

S R A 1B

surface. The same approximation reduces (15) to the following

form 1n Fourier space:




O —— 3 1 = N

b 74

B f%/ w (k) . (33)

Here k = (K], k2) 15 a wave number vector in two dimensions; the

dependence of u and - with t'me is understood. In the following

we shall keep the dynamica! eyuations for the surface in their
Fourier form, because tne right hand side ot (33) does not

possess a simpile torm of inversion.

Here and in the following we omit the writing of the

variable t in the argument of all t:me dependent functions,
except when a need for spec fic distinction arises.

For convenience, we define a speed of propagation

(k) = (g*4)° (34)

and a drift velocity of the surface, called "potential drift,"

» in k-space

wik) = <k (k) (35)

With those notations (34) and {35), we transform (30) and (33)

to a more symmetry form.

die (k) , fris sty : /
2+ V) ¢ [ b e (heb) k)

~ick wt) = E.(k) (36)

=10




ii“_(l‘_) : /Aé’ & (&/8) o (b-p) wik')

~

L ek ik
& /u;/().

The form represented by (36) and (37) has the advantage that the

gravitational coupling

1s of equal magnitude but opposite signs in the equation of

evolution of kinetic energy and potentiai energy
L wik) w(-k) , (k) wi-k)

for the case ot a stable contiguration, 1.e. ¢ = -1.

In application:, we shall use both systems of equations,
Eqs. (30) and (33), or Eqs (36) and (37). The letter system
will pe used, when the mechanism ot turbuience 1s controlled by
the gravitat onal coupling between the kinetic energy and the
potentiai energy, while the former system wili be used in other

mechan:sms where such a coup!ing does not come into play.
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[I1. OUTLINE OF THE SINGLE AND REPEATED
CASCADE METHODS Or TURBULENCE

11IA. Purposes ot Single and Repeated Cascades

In the past, ana'ytical theories ot turbuience have been
based upon investigating the hierarch, ot velocity correlations
of var ous orders, and des:gn'ng the methods ot closure. The
degeneration of correlat:ons from high into iower orders can only
be performed 1n an amb:guous way, since all velocities 1n the
high order correiations have to pe treated unmiformly. It 1s well
known that such a practice may 'ead to serious difficulties.
That those velocities appear uniformiy 15 a certaln consequence
of the mathematical model adopted. Physically, since a velocity
consists of many scailes, it s expected that like scales will
group together to form correlations of non-uniform pairs playing
non-un'torm phys-cal ro'es.  In ¢rder to allow such a selection
ot scales 1n correlations, we prescribe ranks 1n the velocity
variable

A turbulent motion 's a quasi-stationary process, having
a continuous spectrum of coupled scales  The iarae scales form
a "macroscopic background," prescribing the background conditions
for the mot on of smali scales The smaller scales move more

"randomly," and, as a result of the statist:ca: effect of their
tiuctuat ons, shape up transport propert.es 1n the background
medium  The above divisiun nto macroscopic and random variables

are relative to any wave number of the spectrum  Thus we write,

for a velocity u 'n the physical space or n the wave number space,

i




o

ﬁk._ - ——

u. ',A_,o -+ U (40)
in a "singie cascade," or further decompose 1
)
!
, (t) (2) (V)
T e AR ) & + IR + + W o (4])
so that
(p"
2 (W )
RO S (42)

becomes a “repeated cascade " More yenerally, we can decompose

u 1nto
3 K ‘,C-/} (,(/n
v,/. < v - v p (43)
i
: instead ot (40), with
v /(%) 5 x-1)
? T " gv( (44)
. ") ; i) ()
':/ = -{.’ + - (:(: : (45)
Evidently, v”’ = U ;

7

The superscripts denote the ranks, with a higher rank

having a higher degree of randomness. Thus the ranks u” and

AR ————— B 5o A b e e s 2 I— st
T A R R T AR T TR S

V(“) will be cons'dered as macroscopic backgrounds, while 2:

and v{‘) w !* be random fluctuations 'n (40) and (43)

~

The rank u  1s re-ponsible for torming an energy, of

13-

g
i
¢




scales up to a wave number in the spectrum. The velocity u'

represent: all the -maiter scales which shape up an eddy vis-

051ty 'n the backyround medium  For the purpose of turther
determining the approach to equ'!ibrium ot tne transport property,

u' has to pe subdivided 'nto higher ranks {4i) in a repeated !

(1 (2)

contribute to an energy and a

cascade, where u and u

relaxation frequency required tO rtormu'ate the eddy viscosity.

(3) (&)

In continuing the sequence, the higher ranks u .relay

to high order relaxation frequencies torming a memory chain.

The method of closing the hieragrchies ar.s5ing from velocity

correlations of various orders, and rrom the said memory chain

has been treated by Tchen 'n applications to hydrodynamic turbu-

5

Tence For the swm:lar problem ot closing the hierarchies and

the memory chain in gravity turbulence, we wiii need to consider

a repeated cascade for the varrable u, while a single cascade

Ny ] suffices for
: i ? e v © po. /
E i =~ 5 o + ("/ (46)
; .
| §
:
1 and
W = v e e (47)

A B W I P Y T RS TR

In tne above p Cture of quasi-stationary turbulent proc-

cess, the large scale motions are considered relatively macro-

g Ry A

SCop ¢ and the .ma ler scales dare more rancom  Thus, we can

e

associate a high degree of randomness to high wave numbers, by

afls

P s~
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writing

%
L T } Ak w(k) M/)(L,é x ) (48)
> re Jk(n(..,) iy N A
= | dk wlk) anp (Chox) (49)
5]

pH (50)

(‘)(k) 15 understood to be truncated

(a-l), K(a)r

In the notation (49), u

between the wave numbes interva! (kK The trunca-

t on (48) needs nut be sharp, and, 'f necessary, can be regulated

by a scaling distribut:on

:

$

§

3 [{1B  Averaging Rules

§ A "cascade ensemble average," o+ "rank average," denoted
; by

Loy (51)

15 expected to separate tne two components 1n (40), by averaging
over rea’izations under identical macroscopic background u .
Atter such an averaging procedure, the random component u' be-

comes macroscopically negl gible, and the macroscopic component

«1§a




u- comes out intact. Thus we have
K 4 < BN e E N >
u) = w (uW= U'p=o0 (52)

Similarly a rank average

]

< ¥ (53)
would annui u , i.e

{ud =0, (54)

and could correspond to a spatial average ot a iength interval

X'. It mey be noted that X may tend to :nfinity 1n a homogeneous
turbuience
For the use of distinction ot a more general rank =, a

rank average
s ) (55)

)

corresponding to a length interva! x'*’ is introduced. The

following averaging rules apply:

U e 0 it 3« (56)

il 1t < (57)

as a generalization of (52) and (54).

-16-
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‘n Ref 5 we nave 1ntroduced a distribution function of
many veiouities ordered 'n ranks as random variables, and dis-
tribution runct ons of reduced velocity ranks. They are simiiar
to the distripution tunctions 1r the BBGKY hierarchy of kinetic
theory ot gas. They serve to detine the rank average (55). We

shall not enter 'nto such a deta'l here.

I1IC. Rarks and Rank Values ot Corrcelations
in view 0of the condition or guasi-stationarity of turbulence

of rank o, we can write
& X o R ) / (o 7
W) P = x (k) k') \ c)(é 5 o LG8
where

A= ) (59)

i5 cailed a "scaling tactor," and $ = 2 1n two dimensions,
giving the foilowing re'at1on petween the velocity correlations

'n k-space and x-space:

W)

’._ \*)[ ) ')'(F*’)l/"(’)/t\; J : /’ J .{. _/';1 \’:(w/ (H/( b’ /L/ (60)
-0
In part cular, we have
7/ \ "w ’
(-.'_f-(;-" . '-.‘ ) = f_*“! X /\(/f/' (f_'(_fz'b : - (61)

17«
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(1)

with x' = x

we introduce the :ntegrals

45, PR e >‘°‘)
: 7 (k) ‘/}‘d < \% (t/ &, ’4/ (£ _'é)
: :
with
w (3() e .é !c("{f;
/ | d & S L)
| S 72’ )
and
: of o / I ) (“)
il [t X 8) et
:
with
s P,
‘ 7 = [ dk / (&)
/v N

we assume that the turbulent motion 5 stationary in

time with:n the duration ot correlation, and write

(s 5, )

(% ) el . 2 ) : () 3 (d) ; (“)
\“, (t ﬁ/ i i/ -’\u.: (vé’) %d (t~t, -£)> ’

/

reducing the t.me integre! (62) to

\’~ ) 3 (K

ro . ) . &)
7 (%) / dT X <&, ;t)ﬁ) - :TT —?)> :

J
/

In connection with the velocity correction at two instants,

e ————————— s .o e

{
|
(62) E
(63) ,
(64)
(65) !
@
(66) I
, I
(67)




where t-t [f the turbulent mot on of rank = is of a

sufticientiy sma!l scale, the assumpl:on of 150LrGpy can be applied,

giv'ng

\° ) (‘f/‘

) it J g e
/ L g 7 L \ )

/
Ry 1s called an eddy viscosity of the a-th rank,
In view of the averag:ng ruie (57) and of the expected

presence ot

CORN SIN
/’ "

7 {u . 69
e e
[
in the equation descriping the evolution ot u‘“), we deem that
H 9‘} g ] ) .
e u(‘T ). %77 nay a rank vatue 5. As a conseguence,
s i i I‘\
the eddy viscosity {j/’ as obtained by a time 'ntegration, which
amounts to a smooth.ny process, wili have a rank value a-2 or
Tower  Thus
/ &) (%) \:":..[‘x i
AR has a rank value o - ) (70)
/
and
;7' has a rank value < x-=/2 (71)
7

A dynamical equation tor the t:me evolution of a rank

) 3
uS‘ may contain terms 0f other rank values, suth as u? ’,

With & # . However, on account ot the properties (56) and (57),




such terms cannot contribute to calculating statistical quantities,

such as <u{® ug.“);(“),

; by the dynamical equation. Thus, we have

@ W R s e
WO B w

0, i B (73)

where i and j are arbitrary indices. On the other hand, if

(8)

B > a, U raisesthe rank value of ugs) u‘g“) above a, so that

~

its o-th rank average vanishes

<LL(L-6) u;u)>(x3: o :; ﬂ)o{ |

For their usefulness of contributing to statistical
quantities, we conclude that all the terms in the dynamical
equations of single and repeated cascades must have their rank
value conserved. Nevertheless a dynamical equation for the
evolution of a rank o may still couple to other ranks, pro-
vided they possess the same rank value a.

For the above reason, we can rewrite (70) and (71) as

<l:'4.(‘() gfd)y)s <\/(°‘) v(“)>(°() 5 rank value -/

> G rank value ¢ x-2 .

N
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IV. DYNAMICAL EQUATIONS IN
CASCADE REPRESENTATION

As mentioned in Section III, we will need a repeated cas-
cade for the velocity and only a single cascade for the surface.
Therefore, we write their respective dynamical equations as

follows:

il

dt >t S

~

. EW@) Sl %(«)(4%)

L /% g u@u )
Dt e
00 , : @) \\/(‘(),
3-/ Ak L%d j (~’é/) ¢ 0%)

s

W, o - g *
du (&) U (%) +/M§' L‘é \{( (%-k') uf)(é

)

o e Rl S o +1)
_//dflt'é B()\/'f*i{) \\L/()(wﬁ)+</ ({ g) ( ) > :l

(77)




where

() ®)

i f

SEE T ey
= /_:”% ”é/ /(’f £) gk

AL KCHCNOEY ) S Y S Y
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LANGEVIN EQUATION AND ONSAGER'S
RELATION> FOR TURBULENT FLUXES

It 15 to pe remarked that D,Dt represents a Lagrangian
derivative, 1.e. a rate ot Change foliow:ng the path of a fiuid
element. The variable t 'n D, Dt can be treated as a one-dimen-
sional variable in the Lagrangian representation, notwithstanding
its four dimensi'ons in 1t me and three wavenumbers in the Eulerian
representat‘on. Under such a ¢ircumstance, and in analogy with
the Brown:an movements ot molecules, Eqs (77}, (78), (82)
and (83 can be regarded ot Langevin equations for turbu-
lent motion, ‘f Kk is taken tJ be a parameter. Tho:e Langevin
equations wr 11 be useful to ca‘culate riuxes and associated
transport coetticients of turbulence, a5 't should be recalled
that any transport coettficents are ndeed represented by a
Lagrangian description 'n statistical thermodynamics  For

this purpos.e, we make a tormal 'ntegration ot (78), giving

(=¢j

\‘ (t, A:) : j‘, L L/ f"" K‘ ) }/"/:). . (/(’ _.[/" $ :d/‘(:}/é)bx/:)(-le) §

where

[ i
{‘ )/‘ k) ;”L/ﬁ L P

/

It 15 to be noted that a term ¢ m'iar to that in ~-++:' on the
right nand :1de of (82) has not been car<ied over to (78) and

(85), for the reason mentioned in [i.C
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Since a transport property 's contributed by a correlation

()
from a rank v ’

In a quasi-stationary background of rank !(°)(t,5)
in the cascaage (43), the upper Timit t will belong to the quasi-
stationary time sca'e which s much larger than the duration of
that correlation  Therefore that upper ifimit can be replaced by

=, and vi“)at‘,k ) ¢an be replaced by_vS‘)(t,k'). For the same

reason, the ‘nitial value will not be correlated with any

fluctuat:on at time t, thus simpiitying (84) to

Seet) - At 2%g) wpl-v@-t)]
3 - p ) [
- /dl‘ h (f—'C,é'} (86)
O
Here - - t-t', and
«) ) o 4 o (v’ v
8 lent)- -] 48" 8] Sha-k)ViekrsEtep) . @D

We have aiso neylected the triction as being smail compared to

the eddy mixing process

(a)

The expres-~tun (86) tor the tluctuation v, avairis 1tselt

to formuiate a tiux

PN ) (] : ) A‘M /\" )
Q¥ (Lk-k)v it k') Ak Jr\ ./ ,té ¢ t-r k" é/
/ L o ) 0 e 448"
ﬂ: 7 (&) (x )
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A1l the terms have the same rank value .-1, except the last term

on the right nand s'de of /85) which has a rank value up to a-2.
Such a disparate rank w' ‘' not cuntribute to the flux, and there-
fore w1l be omittea  When we make use of tne property (58) and

the definition {64), we reduce the tiux to the form

(x g = TR 1 A7 1, ) 8
gy )= FU0) s oy

s R /J,—; N~

Thus we find the stat stical eftect of fluctuations of rank u'
upon the evolution ot u to take the torm of a flux (89), which

15 proportiona’ to the backyground veiocity gradient, with the
proportionaiity coeftrcient g'ven by the eddy viscosity. That

a flux 1: proportionai! to the gradient of the quantity to be
transported seems to faii unaer the general Onsager relation in
thermodynam:c. ot irrevers . ble processes.  Therefore, by repeating
the method used for the derivat on of the momentum flux, we obtain

the simiiar relations tor the surtace fiuxes

(ot h-k) (e &)y ,ff K} ik ()W) . (91)

/
/

The relations (89, 90, and (9i) wi'i be called the Onsager

relations ot turbulence We -hall not nave the need of fluxes

,(*) (—1)

of higher ranks ar1zing from and w' "/, and therefore they

are not written explic tly here
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VI. TRANSFORTS OF MOMENTUM AND ENERGY

By relying upon th: 9nsager relation (89), we can trans-

form the equation (77) for the momentum transport into the form

[g,? + w'(fe)] ub(f{t) = E;(f,f) -3(“:(‘/ é) 5 o

where

o]

C\)’(/t) =[:‘é' /EJ’ é’ Z:qé_é/I)
i ZM (93)

is a relaxation frequency.
We can assume an isotropic turbulence for the small
eddies contributing ”55’ and write

(k) = LN (98)

If we treat (92) as a Langevin equation, and integrate,

we find

ra

with) = [ dr Ef-mh)anp(-wT) - (95)

O

Here the initial value is omitted, because it does not contribute

in any correlation. In addition we have neglected the friction y

as compared to the eddy relaxation frequency w'.
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In a similar way, we reduce the equations (80) and (81)

for the transport of ¢“ and w® into the following:

[+ @] ) = bk W)

~

_?+w7ﬁ bn%y;,ELcﬁ g&f)/

or, in terms of E;,

{J +a)/k)] tk) =§ <k koulk)

The equations (92), (96) and (97) for the transpors of
gf, z“ and w“ take now a form considerably simpler than the
original form in Eqs. (77), (80) and (81). The simpler form
casts its nonlinear transfer into the relaxation frequency w'.

Upon multiplying (92), (96) and (97) by u;(-k), z°(-k)
and w°(-k), respectively and taking an average, we find the

equations of energy in Fourier form:

() WR CAY = E W) = Y k) uich) v (ka-k) D)
)W st = ¢ w"«w CSe(tk) 0o
_m)@k)w(k/\ = LE RSy ¢ (ks-t) (101)

In the above equations (99), (100) and (101), the convection

terms do not contribute to the energy evolution in homogeneous




turbulence, and are therefore omitted. The complex conjugate
part is represented by (i - - k), as obtained from replacing £ by
-k.
When we multiply {99), (100) and (101) by a scaling factor

x°, and integrate with respect to k, as prescribed by (60), we

obtain the equations ot energy balance

-k _ gL e Sl 5 s . °
WS S E C  a  a

oy o s s " RO g
—:?/oa'/e k)= - L/_o/@%@(gé)c%faj):;/;—Tg ! (103)

27 Uy

%fd&(}(kyijg_t_[?é')\/°<w°(é') W’(_f» 2 E Fo_ T;- /\]wo : (]04)

g

g with the following transport functions:
&

§ (a) for the kinetic energy

: T = 7']0

2')

I'= 2 [ ak & Ak
B = [Td kG Tk) k)
| Vs z?f’/édk' Fk')

= )’j:yk/ )(°<611?,f).ef1z:'f%>;

M= /"Zm ), k)= X EY-w-t)

(105)
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(b) for the surface

I z.fkolk'lz'?'H(/e') =/§/e'/e'2/r°<c°(f,/e):7f—g>"

= [ [0, Tlh)= Gh) X Ewh) ety

(106)
(¢) for the potential energy
e 9l
P L ’ 2 /wl ’ 2 e 0, %
L=e [k k2 Gl) = [a 47 X7 Cap)wt-b)
(107)

In the functions (105), (106) and (107), we have not written

out the complex conjugate part explicitly, as we did in (99),
(100) and (101), because the integration with respect to dk in
the interval (-, =) rules out this necessity. The functions

b e Tz and To are called transfer functions, they govern the
cascade transfer of energy across each individual spectrum. The
terms vJ°, AJZ and AJ; are dissipation functions, proportional
to the vorticity functions J°, JZ and J;. with the molecular
viscosity v and diffusivity A as proportionality coefficients.
Although the dynamical equations (102), (103) and (104) were
established without consideration of dissipations, the dissipations

-29-




are now added to keep a conservation of energy, as an often

allowed practice in hydrodynamical problems. Finally r° and rz
are called gravitational exchange functions, and they govern the ?
exchange of energy between two portions of separte spectra which

are subject to the gravitational pull.
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VII. GRAVITATIONAL EXCHANGE

g

The gravitational exchange function (105) involves the
coupling <E°(t,k)-u°(t,-k)>°, which can be calculated by means

of (92), and gives

<€oﬁ")'ﬁ‘.(t"/f)>° =/;75 <§7f'ﬁ)'§°5‘-r,-f‘)>°m/“(-w'c) 2 0E &

The correlation under the integrand in (108) has its development f

governed by Eq. (98), which is |

() QUpEE Iy -k b Glpjeteny. o

T R R e T R DA S - aanad LE A s i g
T et o i e A R i

The isotropic form is¢ valid for the present isotropic

turbulence

AR G TR

(L (el g’ yershY . mo

and can be integrated to give
E R Eleb) = Elb)- €t aap(-'7)
‘ e ,2 ¥ ’ ° e ' '
?’ + § fw’ /od[' <‘f.(t' é) f(t-r,'-f))mp(-“ (T"r)]/ (1)
where

b = kc/?.w' & | (112)
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is the ratio of the frequency of oscillation of a sinusoidal
oravity wave to the turbuient frequency. Since the aenerating
gravity wave has a frequency lyinag in the production subrange,
and the turbulent freguency is in the inertia or higher frequency
subrances, that ratio is a small quantity.

her we substitute the expression (111) for the s

correlation into (108). we find

/ \ P (/
/=€y }\/_u//f~é/'>=. _/

Ehiultop)?= 356 f/c>

‘ /‘5\‘ —C © o S5 o - j
. “f.{ﬂl%dr Gler/ slis Do) (113)

/
¢ |‘r]

The order o7 the double integration can be inverted to read

~A0

/0 Mo—rr* e (-2wT) = /;dt Zc/r “f (2w

SJ_ (;71,/ (7 / (”4)
P wxp (-20 i
0

and recuce (113) to

Elk) )y = s ECL EC-)

A __'.aa)/c/z Glh k) EG-T-k) (115)

~

[t 1s to be remarked that the intearal term on the right
hard is of the order of %@2<§f(t,k)-u°(t,-k)>°, and is a factor

52 smaller than the term on the left hand side. When such a term




is neglected, we simplify (115) to
Elr) b)) = (Ehk)EE-E) (16)

It follows the expressions for the gravitational exchanges written

in terms of the spectral function H(k):

5 S P
ro‘/"’s' (200) X E UM EEAD =/o/£’&‘f/({;//"/ (M7)

[s [ fowgon] xgupeesy

’ ’ 2 /
‘/kow [ke®)) HE) . (118)
w'(k)

o}
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VIII. EDDY VISCOSITY AND MEMORY CHAIN

VIITA. Structure of Eddy Viscosity
A turbulent motion, when decomposed into a macroscopic

background and a random fluctuation, finds an interplay between

the two parts in such a way that the statistical effect of the

random fluctuations upon the macroscopic background appears as

a turbulent stress, expressed by the Onsager relation (89) as
derived by the Langevin equation (78) of fluctuations. That re-
lation enters the eddy viscosity n(a) as the proportionality

coefficient. Now in order to substantiate n(“),it is necessary

YR o L Mt g =

to extend a correlation <u(a)(o)-u(“)(r)>° over a certain time

period commensurate with the relaxation frequency w(“+]) of

} ? smaller scales. We shall study the development of that correlation

] f from the momentum equation (77), which is rewritten as
; X+
p ¢ 2L-+-a) {) u( (t k/
; - 00
: [ ’ / (« &) (“() o
1 = o[k Wk b) k) ¢ ETRE)
_lx\l ~ ~ ~ ~

, (119)

after substituting for the stress from (89). Here

R

(D&@L géZ”@wQ (120)

e

is a relaxation frequency of rank ~+1.

(

> Rt 3 e

 § Upon multiplying (119) by u, “)(t',-k) and averaging,

we find



<:i%—+‘tdﬁb*%) <?fﬂézu§) ufg(zfiﬁ%>§)
— ooafélt'/é., él(‘)(l’é 9. ) N V(’U
- / d g Ul‘ é; _,!‘)> (f k)
) )
i <t¢ ﬁé) “s('a()ﬁ: ‘/5)> ' (121)

The second term on the right hand side vanishes on account of

(70). After an integration, we have

GEHH Hrd) = () 4t p (-0 )

T
i S C
R G TP (RS (122
O ~
A second integration gives

[de Gk s )y

(et ot k)}

I X w
&9 / dz <Ef b w it —fe)}(“). (123)
0

A double time integration involved in the above and was handled
like in (114).

On the right hand side of (123), the last term can be
computed from writing an equation describing the evolution of
E?, similar to (98). As a result, we reduce that term to the

same order and form as the left hand side of (123), but at a factor

-35-




P Enatv B e

PN

92 smaller. The details of the calculations are similar to those

leading to (116), and will be omitted. Thus, by neglecting such

a term, we find

e p v

2 w("*')

7(«) i« /Lx://t <b:(.x)((, k) %(x)(t_é))(«)

s 2 w(a{+l)

~ /5(‘?"/\

5h) = 167(“’)

where n(a) and t(“) have been defined by (63) and (65).
The formula for the eddy viscosity n(o), obtained by
putting = = o in (124), is similar to the gravitational exchange

function I in (117), except with a different controlling energy.

VIIIB. Memory Chain

We note that the transport functions T, TZ, T;, r° and
rz,. as derived from the single cascade method, depend on the
eddy viscesity of first rank o' = h(]). However, the approach to
equilibrium of A entails a memory chain, as exemplified by the
formula (125), and rewritten explicitly in terms of a spectral

distribution of kinetic energy F(k), defined by (105),




5 o) s [l _SE7

k k(')zﬁ‘?"‘\z)\/x/ ﬁ_(')}
o) . (P
i

and the chain continues. Here n(°)(x/k(°'l)) 1s an eddy viscosity
of the a-th rank 1n the x-space. The lower Timiting wave number
k(a']), according to the definition (50), is written into the
argument.

In Ref 5 we have discussed a method of cutoff of the
memory chain by molecular damping, in which the eddy relaxation
frequency will be taken over by a frictional frequency at suffi-
ciently high rank of the chain. The result helps in determining
the cutoff spectrum near the ta:l of the dissipation subrange.
Since this 1s not of special interest i1n the present work, we make

an inviscid approximation, by writing

N(') ’

o G (x/k) (127)
fv(?.) 2 A

bl i e

with the eddy viscosity (128) set at a higher 1imiting wave

number than the eddy viscosity (127), simplifying (126) to

F(k)
/ dk ' (129)
L *7(*//@)

=37
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The integral equation (129) yields the following solution

7'== l:z/:}k’ B TE F(/z’):lsz (130)
A .
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IX. UNIVERSAL RANGE OF SPECTRUM
{: The universal range holds at sufficiently large wave
4 numbers, such that
i b k £
- b ) p.)
— [ dk Flk’ et & (3 — [dk’ H(b
¢ \ot/dk Fk) ‘ ?t/ G(k) . >t X (/
,,‘_- 0 (¢} (2]
i; become independent of k. Noting that E
Tlk=w)<0, T (k=o)=0 ,
i~ we can rewrite Eqs. (102), (103) and (104) in new forms for
t k = =, and subtract the new forms from the original equations,
§ yielding
% ot W S TS R (131)
f Y I—v° . T° . ’* ° LS ]
el fc U; o (132)
k5 r—\° & o + 0 e, +
g | Tw A Iw Er Ew ’ (]33)

with the notations

M k). o= Rle=s) . P=¥Then) |
J = (k) . Jo= Llewe) . ] =]o(te)
€= ] : f§=)]c : S
(134)
w30=
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IX. UNIVERSAL RANGE OF SPECTRUM

The universal range holds at sufficiently large wave

numbers, such that

ot ¢

k k 4
':T/d/e‘ Flk:) 3-—/0!&' Gk) . 2| HF)

become independent of k. Noting that

Tleew)=0.  Tle=)=0

we can rewrite Eqs. (102), (103) and (104) in new forms for
k = =, and subtract the new forms from the original equations,

yielding
-+ T+ V]°+‘}’°= —r+g+7U
*€E+TC+/\]< it B

Bl e

w

with the notations

- Pke). = Rlles) o pepilion)
J = I"(kew) . Jo = [k
€= 9] z§=xjc : &a k]

=39

EER B o B0

ik 5 b

(131)

(132)

(133)

(134)




In the present quasi-stationary process, the coupled
integral equations do not have the time t as an explicit |
variable, with the understanding that the spectral distributions |
F, G and H may vary slowly with time through the physical para-

meters ¢, €, and €y’

T R 2 TR S o T e
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X. INERTIA AND DISSIPATION SUBRANGES
FOR STABLE AND UNSTABLE CONFIGURATIONS

(¢ = -1 and +1)

We refer the configuration of a heavy liquid above a
1ighter one as unstable (¢ = i), and the reverse configuration,
e.g. sea surtace, as stable (¢ = -1). Their distinction lies in
the roles of the gravitational pull: 1n the unstable configura-
tion, the gravitationa! pull becomes an eneryy source for both
the surface elevation and the velocity which endows it, while in
the stable case, the gravitational pull serves to produce the
kinetic energy at the expense of the potential energy, so that the
two energies must balance The gravitational pull is represented
by the exchange functions -1 and :;-;C in Eqs  (131) and (132).
Since they operate only at small wave number, they become absent 1in
the inertia and dissipation subranges, so that the spectral laws
will be valid for both stable and unstable configurations.

Under those circumstances, the equations (131) and (132)
governing the :pectral distributions reduce to

p : R /
%) s 4 : y 4 ik /",I\'/) == 5 7‘/ (134)

FF (135)

The first of the system (134) and (135) becomes decoupled
from the second, and can be :olved independently. The flow of

energy between transfer and friction can be best described by a
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e e

differential form

dy'
dk *

obtained by approximating

o

I'% J

The solution ot (136) 1s

F == --’- ].' Y 3 yé;/)"/ /4 yé‘\/\}-'léaj (]37)

T ,’xff’” T ;.'; : 2 4
M.t el ) bl TN S AR, Y+H2PR o
- 2 [, 2 2
iy | A +rAJ (Y+74?)
The general soiutions 137) and (138) cover subranges
including the three parameters , and = We shall consider the

foilowing three subranges:
(a) Inertia subrange with trict on {. = 0, - = 0)
By writing - 0 and - : o,we reduce (137) and (138) to
3 S { 1 r ) {1 i (139)

. : ol
H=2(YT) %k . (140)

(b) Dissipation subrange with surtace friction (. = 0)

When the spectrum (k) falls by friction, as

-42-
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+

SOV b (142)

the surface spectrum 15 dissipated by 1s moiecular diffusivity

+ and become:
e (143)
(q)' thsipatyon subrange without fraction (y = 0)

By writing . - 0, we reduce the general solutions (!37)

and (138) to

F = (7/v) & (144)
H 1Y) R, (145)

1n agreement with the He  enberg law of (1),
(d) Inertia subrange w)thout triction
The inertia subrange without friction reduces further

Eqs (135) and [126) to a decoupled system

(146)
“ (147)
which gives the solutions
S Y L (148)
-43-




H = 585 &8 g6 (149)

'n agreement with the Kolmogoroft law of (1). [t is to remarked

that free medium and a moving surtace have two different numerical

coefficients 1n their 1nertia subrange.




Xl GENERATION OF TURBULENCE BY

GRAVITATIONAL INSTABILITY (¢ = 1)

In view of the unstable configuration of a heavy liquid
above a lighter one (1 e. ¢ - 1), a turbulent interface may be
generated by the gravitat'onal instability. Unlike the stable
sea surface, where the effects of the gravitational pull balances
themselves 'n the kinetic energy and the potential energy, the
present unstable configuration reiies upon the transfer function
for transferring energy across a Spectrum, and upon the gravity
exchange tunction for teeding energy separateiy into each spectrum.
Theretore, in the product:on subrange where the above mechanism 1s
1n eftect, the moiecular dissipations can pe neglected, reducing

the equat'on of energy bdlance to

2, , [ v.. }1" rd L ‘,t | ; o P
__/ b | k') % & v { " }/;:/‘ F5 F yb (150)

s e ik
Jo } (*/R /

[ L (k)f R/ £ % e W _ (151)
% g

/ 4

,0 7\:/“‘( ,‘

The equation ot potential energy 15 not useful here, because there
will be no balance between the kinetic energy and the potential
enerqy

The tlow or energy from the gravitational i1nstability into
the wave coup!ing by inertia can be more explicitiy demonstrated
from a ditferentral torm ot (150) and (i51),

2 ¢ L/ E cd'n'
k£ 13 sk E Y ik s T o

- - ; — + ¥ &R / J :‘ -
7 / R “52)




<
¥
<
E
£
i
i
t
8
p
i
I3
£
"
¢
E
&
'
:
.
'
{
4

- 7"2..-4“—/ + ];°.‘_’1_=o ; (153)

The gravitational puil in the unstabie configuration
provides a natural scurce of energy, T0r maintaining both spectra
In their respective subranges of production, and for keeping them
trom being disintegrated nto d ss:pation.  Under those ciarcum-
stances, the vort'city functrons J°, and J? controlling the eddy

disspations, can be neglected, reducing (152) and (153) to

P k2 3 s il R Yu'fe
ol ik b (154)
/
and
o i ssata e 8 e (155)
where ' s given by (130}

we find the soiut:ons

Fodid (14 oo kz) (156)

+ f:y/g,z-,i_ {?/f}) éi]\zl g (157)

g, e (158)
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1s @ frictiona’ transition wave number separating the two

cegimes:

(a) Non-frictional, k k , and T=0

{b} Frictional, k
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XIi. SEA SURrFACE TURBULENCE
CONTROLLED By GRAVITATIONAL PULL

in a stabie contiguration (- - -1) like the sea surface, the
effect of gravity 's to pu!l down the surtace elevation, and,
during this course of act'on, to disperse the surtace iiquid, hereby
to raise the velocity of dispersal. In order to subscribe to the
above mechan:sm, the same grayvitationa! exchange ftunction, which
cepresents the puli, shouid not only play the roie of building up
the kinetic energy as an acceleration, but also of depleting the
potential energy as a stab:t: ¢ ng force, with eyual but opposite
amount in the system ot equat uns tIr the balance between the
kinetic energy and the potent:ia! energy. Since the spectrum of
the kinetic energy 3 in the production subrange as a result of
the gravitational pull, the friction wi!i be neglected by writina
y = 01n Eg, {131), In additionswe omit the mo'ecular dissipation
functrons in both eyuat:ons, reducing the system of eqﬁdtxons

(131) and (i33) to

(163)

(164)

in order to discern the energy flows across each of the
two spectra more cenvententiy, we rewrite (163) and (164) 1n

their ditrerential form
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describing the energy fiows across each of the two spectra which
are in two different reg'mes of deveiopment. The spectrum of
kinetic energy 1s 1n 1ts early stage ot development in k-space,
in view of 1ts regime of production. Therefore i1ts vorticity is
not yet formed, permitting the approximation J < o. On the
other hand, the spectrum of potential energy 1s i1n 1ts later
stage of development in k-space, 1n view of 1ts stabilization by
gravity. Therefore the large wave numbers controlling the
potential spectrum bring 1ts vorticity to saturation, permitting
the approximation Jw - J,» and at the same time rendering n'

negligible As a result, the system of equations (165) and (166)

simplify to

el V‘M,- = 0
W’ dk

The system of integro-differentiai equations (167) and (168)

kT W

yield the solutions

-49.
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XII1. SIMILARITY THEORY

Unstable surfaces refer to turbulent surfaces of a heavy
I1quid above a li1ght one, and turbulence is generated as a result
of Taylor instability. Stable surtaces refer to the surface of
a heavy liquid below a light fiuid, e.g. a sea surface.

We shall summarize, 1n Table 1, the results of the
spectral distributions obtained from the present analytical theory.
This gives us an opportunity of outlining their fundamental
mechanisms and governing parameters, and of supplying an addition-
al dimensional theory of the spectral laws. For the sake of
abbreviation, we shall omt the surface tension in the dimensional
considerations. The numerical coeftficients will aiso not be written.

We distinguish the following subranges:

A. Production by gravitationai acceleration

Th1is subrange exists for unstabie surfaces and 1s absent
for stabie surfaces.

The trictionless case is governed by the parameter g,

and on dimensional considerations can find the spectra

e e e

tor the kinetic energy and the surface elevation, respectively.
The frictional case has a second parameter, which is the

frictional wave number

% :f"z/;;

¥
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Since the elevation of the surface 1s opposed by the friction y
to 1ts first power, we find
. 2 , % ik
L0 H = (k/k)" 47" . (174)
B. Inertia

The spectral laws 'n the inertia subrange are independent
of the gravitational eftects, and are, therefore, common to stable
and unstab'le surfaces

The frictionless laws are governed by the parameters e

and - , and agree with the Kolmogoroff laws:

: 5 /3 -3 5/3
= 2 /5 - L5 - -
£ g idd  SHeae 8 (175)
Their dimens:ona’ derivatrons are well known and will not be
repeated here
[f the triction s dominant, the kinetic energy is trans-
ferred across the spectrum to secure a baiance between the
triction and the saturated vorticity  The governing parameter
1S
o : /Y.
1, =7/7. (176)

and a dimensional consideraton with this parameter gives a

spectrum




Since the surface spectrum should be proportional to €

according to (135), a dimensional analysis using the parameters

Q@ and = ylelds
Y

Mol g

C. Frictionless eddy dissipation by gravitational pull
This mechanism of wave dissipation controls a stable
surface only. The governing parameters are the potential
vorticity Jw and the gravity g. Since the build-up of the
k:netiC energy occurs at the expense of the potential energy

with a vort:City Jw, the spectrum of the kinetic energy 1s

By balancing the gravitational acceleration with the

non!inear eddy transfer 'n Eq. (]67), we find

A T AT O3 2

Upon substitut'ng ¢179), we find, trom {180), the surface

spectrum

on a dimens vnal argument.

R I ey Ry IR SR PPN 1 AT P T




P — LA i 2pas
D Moiecular dissipation
; The frictionless laws

]
i
13 SN o
§ . E -
i Fo- ok (182)
; 1 3 ‘ ) =7
i H o=y Mk (183)

PRy

agree with the He:senberg theory for viscous dissipation.

In order to transtorm those viscous laws 1nto inviscid,

but frictional, iaws, a wave number $

o : L L
: Rl - S O ’ ; 2 184
; £, & \Y/ V/ = (\/(L’ /_/2/) ( )
} has to be introduced, to cunvert the formuias (183) and (184)

E £

b § into
i
: o "'7 7 / ,‘W
£ o R (185)
: o
[

| % L wg 1 (186)
He- oy &2 (")
:
‘ We see that we must hove m - 4 and n - 2 for the formulas
! (185) and (184) to be nvisc'd, entailiing
% : RGN Rt ) ) Sk (187)
i f ll.r;_ //‘.,/L/\_~/(_

We conclude that the above dimensional considerations

enable the reproduction of the results of the analytical theory.

rrm
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dimensional law

k into a new variable

gravitational subrange (170).

XIV. COMPARISON WITH OBSERVATIONS

The present cascade theory has predicted a wavenumber

spectrum k'5 for the fluctuations of the surface in the

This law differs from the

/-/(k} = Co‘nsf /A_';‘ (188)

as proposed by Ph1l11ps4 for sea-surface.
By introducing a streaming velocity Ug of the surface

as a reference velocity, we can make a change of variables from

A 189
w o= hu, (189)
having the dimension of a freguency, and convert (170) into a
spectral distribution
| 2 ‘s
Hin) = f - Fan (190)
normalized to
—y (>4}
=5 - fom Hin) (191)
3 [
with
o / 3 2 2
B= ol q /;) (192)




The analytical law ot spectrum (170) is now brought
close to the dimensional formula However, this similarity 1s
oniy apparent, because (170) expresses a wavenumber spectrum,
in spite of the presence ot n having the dimension of a fre-
quency, while (4) was proposed as a frequency law. Moreover,
the dimensionless coetficient &, which 15 determined in the
analytic law, couid not have been determined in the dimensional
law (4).

Several observations have been repOrted4’6;?’]0,
measuring the spatial elevation leﬁtuat1ons as a function
of time as they are conveyed tu the point of the probe by a
streaming veiocity ug if Ug 1S large in comparison with the

phase velocity, c(k km), of the elevation fluctuations in the

gravitaticonai Subrange, their spatial scales past the point of

measurements wiii be observed as fluctuations 1n time, with a

frequency (189), accordina to the Taylor hypothesis. Here km

——

1s the wavenumber corresponding to the peak of the spectrum
preceding the gravitationa! subrange. Althouah the average
phase velocity can be sufticiently farge, 1nvaiidatina the
Taylor hypothesis, the small scales of the aravitational sub-

ranae may qive o small enough c(k k“) as to satisty the
|

Taylor hypothes:s, thus enabling the comparison between measure-
ments and the theoretical prediction pased upen (190) and (192).

It will be convenient to express dw 1n {192) 1n terms of the
mean square slope J , which 15 a measurable quantity. For this

purpose and with the use ot (120). we rewri1te (118) 1n the form
. i R (193)

ER.
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which, throuch (139), is transformed into

e X £ b
2 M diovisole TR (194)
jz
and 1s integrated to give
LW i X
e =2k kK F= " | jkbF (195)
The kinetic energy spectrum derives its enerqgy mostly from its
production subrange, with a spectrum (169). Therefore, without
much error, we can substitute for F from (169) with a cutoff
wavenumber k. at the outerscale 2:/k,, reducina (195) to
7 -/ < 196)
_I/ — 1/\/ ) (
7; iy e /; kc 5 ’
or equivalently
T B (197)
. e FR
A further substitution into (192) yields
¥ T
B =x (198)
L4
with
TR L B g A R (199)

wiie




This value 1s computed by taking the empirical estimates

m g/

where u_ is the frictional velocity, and u' 15 the standard
deviation of velocity fluctuations.

It 1s to be noted that the mean square slope JC has
been measured experimentally and reported by Wu]‘. In Fig. 1
we have plotted the experimental values of B8 based upon the
spectral data of VOlkov6, and found them in good agreement

with the theoretical predictions (198) and (199).
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XV. CONCLUSIONS

The spectral laws 1n (172) are valid for the production
subrange 1n an unstable surface, and are not valid 1n a stable
surface as claimed by Phillips, see (3) and (4).

A stable surface has the k™ law \170) in the eddy
dissipation or gravitational subrange. The same power (143)
holds 1n the molecular dissipation subrange. If the coefficients
in the two formulas do not differ much, the two laws of the same
power will appear 1n a continuous succession. This explains why
the 5th power law 1s so easily found on sea-surface turbulence.

Under the circumstances where the Taylor hypothesis is

valid, the analytical law can be brought to a form (190) which

has an appearance analogous to the dimensional law (4) proposed

by Phillips4. The coefficient 3, which was proposed as a

universal constant in the dimensional theory, becomes a function
of the dimensionless sea-surface siope, as predicted by

(198). The agreement between ihe measured relation for 8
and the theoretical prediction (198) 1s shown satisfactory in

Fig. 1.
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Figure Legend

Variation of coefficient 8 in Eq. (192) with mean
square slope Jc' The experimental points are
obtained by using the spectral data reported by
Volkovs. The solid 1ine represents the theoretical

prediction of Eqs. (198) and (199).
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